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Novel Configurations of Planar Multilayer Magic-T
Using Microstrip-Slotline Transitions

Jeong Phill Kim Member, IEEEand Wee Sang Parkember, IEEE

Abstract—Novel configurations of microwave planar magic-T
suitable for microwave integrated circuits (MICs) and monolithic
MICs are described. They consist of microstrip and slotline
T-junctions coupled by microstrip-slotline transitions. Since
via-hole processing is not encountered, they are especially appli-
cable to multilayer MICs. Derived equivalent network models are
used efficiently for the design of the corresponding multilayer
microstrip magic-T. Measured data and numerical simulations
showing good amplitude and phase characteristics over an octave
operating bandwidth validate the proposed configurations of
planar magic-T.

Index Terms—Computer-aided design, equivalent circuit, slotline

magic-T, microstrip circuits, multilayer.

. INTRODUCTION (@)

HE increasing complexity of microwave systems has led
to the need for high-density interconnects in microwave
integrated circuits (MICs) and microwave monolithic integrated microstrip line
circuits (MMICs) [1]. In various microwave circuit applications,
magic-Ts have been used as fundamental components, such
power combiners or dividers, balanced mixers and amplifiers,
frequency discriminators, and monopulse antennas. A
The rat race is a well-known example of a magic-T, but its
20%~25% bandwidth limits its applications to narrow-band P
circuits [2]. Several designs have been developed to extent
the bandwidth. One technique used g4 coupled microstrip
line section to replace thg\,/4 section of the conventional
3Xy/2 microstrip ring coupler [3]. Although the bandwidth (b)
has increased to approximately an octave, the difficulty efy. 1. Configurations of proposed magic-T. (a) Microstrip type. (b) Slotline
constructing the coupled microstrip line section, which requirége-
short circuits at the ends, limits its use to lower frequencies.
A double-sided MIC magic-T using coupled slotlines an@nother type of MIC magic-T was proposed in a multilayer
microstrip-slotline transitions was proposed [4] to examine thgnfiguration [7], [8]. This type of magic-T uses back-to-back
possibility of bandwidth enhancement and the implementatianicrostrip lines coupled through the aperture in the common
of high-density integrated circuits. Even though this type @fround plane. Due to the electrically short slot used, the
magic-T has the additional advantage of port location, via-hab@erating bandwidth tends to be narrow.
or wire bonding process causes difficulty of fabrication as the This paper proposes two configurations of broad-band
frequency increases. For easy integration with active elemenaltilayer planar magic-T using microstrip-slotline transitions.
and broadband operation, several types of uniplanar magi&duivalent networks are developed to provide a conceptual
have been suggested [5], [6]. However, the fabrication problamderstanding of the circuit operation. The characteristics of
due to the bonding process for wire bridges limits its uséhe proposed configurations of magic-T are computed and
compared with the measured data and numerical simulation

slotline
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Fig. 2. Equivalent circuits of the magic-T. (a) Microstrip type. (b) Slotline A
type.

P4
T-junction on the opposite side. They are electrically coupled
via the microstrip-slotline transitions. Ports 1 and 4 are the sum
(3>7) and differencg A) ports, respectively, and ports 2 and 3
are the remaining ports of the magic-T. They can be classified
into two types fnicrostrip typeandslotline typg, as shown in
Fig. 1(a) and (b), according to the type of transmission lines
connected to ports 2 and 3. Microstrip and slotline quarter-wave
transformers, as well as open and short stubs, are introduce
for impedance matching.

The fundamental behavior can be explained by examining
the corresponding equivalent circuits shown in Fig. 2(a) and
(b), where the microstrip-slotline transition is modeled by an
ideal transformer with a turns ratie. Table | shows the re-
quired values of the structure’s parameters for the proper op
eration of the magic-T at the center frequengy,,, and Z,, A
denote the characteristic impedancag,, and ,, the guide
wavelengths, and,,,, and Z,, the characteristic impedances py |
of the quarter-wave transformers of a microstrip line and a slot-
line, respectively.

Since the case of = 1 andq¢ = 0 in Table | is adequate
for practical circuit implementation, the circuit for this case is
examined further. The behavior of the slotline type is similar
to that of the microstrip type in principle, therefore only the (®)
latter case will be considered. The electric field and currefig. 3. Electric field and current distributions of microstrip type magic-T.
distributions are drawn in the slotline and microstrip line if®) In-phase. (b) Out-of-phase.

Fig. 3(a) and (b), respectively, which enable us to have a
conceptual understanding of the in-phase and out-of-phasés shown in Fig. 3(a), when a signal is applied to agiY"),
coupling behavior. the symmetry planel—B becomes a virtual open plane. The

virtual open plane

P3
(CY

virtual short plane

P3
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Fig. 4. Simplified circuit representations of microstrip type magic-T.
(a) In-phase. (b) Out-of-phase.

equivalent circuit can, therefore, be further simplified at the
center frequency as shown in Fig. 4(a). In this case, the appliec A
input signal is evenly splitinto two in-phase components at ports p,
2 and 3, and port 4 is isolated (in-phase coupling case). Con-
versely, the symmetry plane becomes a virtual short plane for ar
input signal at port(A), as shown in Fig. 3(b), and the equiva- virtual open plane
lent circuit is simplified as shown in Fig. 4(b). The input signal
at port 4, equally split into two components, arrives at port 2 and b)
3 with a phase difference of 18and port 1 becomes isolated { lectric field and current distributions of slotline type magic-T.
(out-of-phase coupling case). If two input signals are applieddg: > Electric o
ports 2 and 3, the sum and difference of the inputs will be formé% in-phase. (b) Out-of-phase.

at ports1(>") and4(A), respectively.

The slotline type magic-T shown in Fig. 1(b) is especially ap- SN SIN SN — P2
plicable to the monopulse system using a tapered slot antenn:i I S el l
[9] as a radiator because of its simple feed structure. Fig. 2(b)p1
shows its equivalent circuit, and the electric field and current I?
distributions are also depicted in Fig. 5(a) and (b). The simpli- ol
Zos

fied equivalent circuits shown in Fig. 6(a) and (b) can be de-
rived at the center frequency for the in-phase and out-of-phase
coupling cases, respectively. The detailed coupling behavior is

180°

similar to that of the microstrip type magic-T. (@
These magic-T forms can also be made using a double g,
substrate (triple-sided) configuration. For the microstrip type D N
magic-T, a microstrip feed for port(}") and a microstrip gzgg‘
T-junction can be placed on the upper surface of the top P4
substrate, a slotline T-junction on the common ground plane, N o
and a microstrip feed for po#(A) on the lower surface of — yot 90° 90°
the bottom substrate. This circuit configuration is useful for P3 O
making multilayer MICs and MMICs. In addition, it results ég
in the additional advantages of port location and circuit layer ®)

isolation for the sum and difference channels.
The impedance matching performance depends on the tufrigs 6. Simplified circuit representations of slotiine type magic-T. (a)
ration of the ideal transformers, and its value is determined ByPhase: (b) Out-of-phase.
Zom/Z.s. The required turns ratio can be achieved by
adjusting?, the inclination angle between the microstrip line anthe inclination angle can be efficiently calculated by the method
slotline, appropriately. The related turns ratio as a function déscribed by authors [10], [11], where the reciprocity theorem
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S Fig. 8. Computed and measured characteristicsSof and Sz, of the
2 microstrip type magic-T. (a) Amplitude. (b) Phase.
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2 Vi
5 lll. RESULTS AND DISCUSSIONS
- \
E /.,\\‘ \ The structure parameters of the magic-T of the microstrip
§ \ type and slotline type with a design frequency of 2 GHz are
< v shown in Table Il. In this cas&,,,, = 50 andZ,, = 67.412.
£ The requiredn = 0.86 can be obtained by setting the inclina-
tion anglef equal to 30.
10 A microstrip type magic-T was fabricated with these design

1 2 3 values. For an input signal at port 1, the network model yields
frequency (GHz) the_ r(_alat|on52_1 = S31, which implies that the signal is evenly
split into two in-phase components at ports 2 and 3. The com-
() puted characteristics of the amplitude%f andSs; by the net-
Fig. 7. Computed and measured characteristicsSof and 531 of the  work model are plotted in Fig. 7(a) together with the measured
microstrip type magic-T. (a) Amplitude. (b) Phase. data. Good agreement is observed. Since the in-phase balancing
betweenS,; and.Ss; is perfect from the network model, only
[12], [13] is successfully used with the spectral-domain immithe measured phase characteristics are depicted in Fig. 7(b).
tance approach [14]. Fig. 8(a) shows the measured and computed characteristics of
The characteristic impedances and propagation constantsh&f amplitude ofS,4 and Ss34 for the input signal at port 4.
the microstrip lines and slotlines can be calculated analytically this case, the relatiol§2, = —Ss4 holds from the equiv-
or numerically [15]. All the characteristics of these configuraalent network model. Therefore, the phase difference becomes
tions of the magic-T can then be calculated from their equivalet®0® with an equal power split. The measured and computed re-
circuits shown in Fig. 2(a) and (b). turn loss and isolation characteristics are shown in Fig. 9(a) and
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Fig.9. Computed and measured return loss and isolation characteristics offfge 10.  Simulation results of amplitude and phase imbalancing characteristics
microstrip type magic-T. (a) Return loss. (b) Isolation. of the slotline type magic-T. (a) Amplitude. (b) Phase.

(b). Reasonable agreement is obtained. A near one-octave band-

width (—10-dB return loss), a 35-dB isolation between ports 1 \ 11 ——51 j;'?-

and 4, and a 23-dB isolation between ports 2and 3 are observec [ T X[ |----- S22 --e--SM1 Xy

In the frequency range of interest, the maximum amplitude im- __ —=—S33 --o--S32 ?0

balance is less than 0.2 dB for the in-phase and out-of-phas¢g (\;\tgjr_:_%;w‘ oo

power coupling cases, and the maximum phase imbalance is les g - /\h o » ’

than 3 and 2, respectively. % v/ \{C"' f A St
Next, a slotline type magic-T was designed. Since the charac-g W Ty o= + a4 f

teristic impedance of the slotline is known to be frequency-de- E!' o b‘s\@' ¥

pendent, it is not easy to measure the scattering parameters ( e "\ ° e

the circuit. Only the simulation results based on the method of £ o

moments (MOM) are therefore depicted in Figs. 10 and 11 in % e I s

order to examine the operational characteristics of the magic-T. ./' 4 e >

A near one-octave bandwidth was also obtained, a 40-dB isola- 3 Tote-et A

tion between ports 1 and 4, and a 21-dB isolation between ports -50 _—

2 and 3 were observed. The maximum amplitude imbalance is 1 2 3

less than 0.1 dB and 0.2 dB, and the maximum phase imbal- frequency (GHz)

Fig. 11. Simulation results of return loss and isolation characteristics of the
1Advanced design system, Agilent Technologies, Palo Alto, CA 94304 USAlotline type magic-T.
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